Organic carbon in soils

Meeting climate change and food security challenges

Local authorities and farming sector

KNOWLEDGE AND ACTION
Soil carbon: what are the issues for climate and agriculture?

Jérôme Mousset
Head of the agricultural and forestry service, ADEME

Soil is the living base for agricultural and forestry production and a limited resource which cannot be renewed at the human scale. Increasingly, land is in demand and there is tension between different land uses. Changes in production practices, ploughing up of grassland, loss of arable and wooded land for urbanisation, increased use of biomass... There are so many changes which, if not taken into account, could affect soil quality and lower soil carbon stocks. Nevertheless, soil is a considerable asset in strategies for mitigating climate change. But this issue lacks visibility and, in order to raise awareness among territorial administrators, decision makers, farmers and foresters, ADEME has enlisted the help of experts, scientists, advisers and representatives of public authorities to produce this brochure. This brochure aims to clarify the role of soil in mitigating the greenhouse effect and, furthermore, to highlight the environmental benefits of better management of organic matter. A healthy, living, well-balanced soil containing organic matter can increase production potential, contribute to optimising the use of agricultural inputs, filter water from these pollutants and increase biodiversity. This idea of environmental and economic services chimes exactly with the principles of agroecology.

GIS Sol in brief

Created in 2001, GIS Sol (sol being the French word for soil) is a French scientific network focused on soils. The network includes the French National Institute for Agricultural Research (INRA), the French Environment and Energy Management Agency (ADEME), the Ministry of Agriculture, Food and Forests, the Ministry of Ecology, Sustainable Development and Energy, the Institute of Research for Development (IRD) and the National Institute for Geographical and Forestry Information (IGN).

GIS Sol is seeking to create and manage an information system on French soils, including data about their spatial distribution, their characteristics and changes in their quality. It works in the knowledge that soil is a limited and non-renewable resource at the human scale.
Contents

Issues

04. **Soil**, a carbon pool essential for the climate

06. Continuously providing soil with organic matter

08. Organic matter: providing environmental services

Points of view

10. Carbon storage in soils: rising awareness

Impacts and levers for action

12. Changes in land use: the need to preserve carbon-rich soils

14. Forest soils: rationalising the increase in harvested wood

16. Agricultural soils: acting on organic matter inputs and losses

18. Agricultural practices according to their cost and efficacy

Points of view

20. Reconstructing carbon stocks Many benefits to highlight

Evaluation

22. Measuring changes at the field scale

24. Measurement tools at the territorial scale

Perspectives

26. Improving and sharing references

27. An international dynamic to combine food security and climate change mitigation

Research

28. ADEME supports research for better agricultural and environmental management of soil organic matter

30. Soil organic carbon matters in the European Union
Soils, a carbon pool essential for the climate

In the form of organic matter, soils store two to three times more carbon than the atmosphere. Therefore their use creates fluxes in CO_2 and has consequences on climate change. Today, the challenge is to limit carbon losses linked to changes in land use and to increase carbon stocks by promoting suitable agricultural and forestry practices.

Carbon dioxide (CO_2) is the main greenhouse gas (GHG) linked to human activities. At the global scale, nearly 35 billion tonnes of CO_2 were emitted in 2013 through the consumption of fossil fuels such as oil, gas and coal, and through cement production. Terrestrial ecosystems mitigate these emissions by capturing more than a third through photosynthesis.

PRESERVING STOCKS OF ORGANIC MATTER

Organic matter in the soil is the largest reservoir of organic carbon, even greater than plant biomass. Worldwide, the first metre of soil contains between 1,500 and 2,400 billion tonnes of organic carbon. Losses of these soils and the organic matter they contain throws into question their role as a carbon sink and increases emissions. A reduction of only 5% in carbon stocks represents the equivalent of two to four years’ carbon emissions. In France, 3 to 4 billion tonnes of carbon are stored in the first 30 cm of soil, which is three times more carbon than is present in forestry woods. The levels of carbon stocks are highly variable, depending on land use, soil type and climate. The trend shows a general reduction in organic matter in agricultural soils, though there are large regional and territorial differences. The evolution of carbon stocks in French soils remains very uncertain because of the many mechanisms involved and the difficulty of measuring them: the extension of forest areas, development of urban areas, conversion of grassland into cultivated areas and changes in agricultural practices. And to this we can add climate change, a phenomenon which encourages plant production and boosts the degradation of organic matter.

TAKING CARBON FLUXES INTO ACCOUNT

With the adoption of decision 529/2013/EU in 2013, keeping accounts of GHG emissions and storage, integrating changes in soil carbon stocks, has become compulsory for European Union Member States. From 2013, this has included variations linked to forestry practices and, from 2021, will include those linked to the management of cropland and pastures. This decision is evidence of the first step towards the future integration of land use issues in European Union commitments to reducing GHG emissions. Within carbon markets, voluntary carbon offsetting schemes represent a way of valuing carbon storage in soils. Currently, at the international scale, the number of such initiatives and reductions in GHG emissions are very limited because of the diverse nature of emissions and uncertainties over storage levels. More reliable and cheaper evaluation methods are needed.

A ‘4 per 1,000’ annual increase of organic matter in soil would be enough to compensate for the global emissions of greenhouse gases (see page 27).

4 per 1,000

A ‘4 per 1,000’ annual increase of organic matter in soil would be enough to compensate for the global emissions of greenhouse gases (see page 27).
The atmosphere contains 829 billion tonnes of carbon, among which 240 result from human activities, starting from the year 1750. The most important annual flux is linked to industrial and urban areas with 7.8 billion tonnes, to which is added the flux linked to land use change and deforestation, up to 1.1 billion tonnes. These emissions are partially compensated by carbon assimilation through photosynthesis, as well as carbon dissolution in the oceans (2.6 and 2.3 billion tonnes respectively). Some 4 billion tonnes of carbon are added in the atmosphere every year.

Organic matter stocks in forests, grasslands and low vegetation growing in highlands are large, whereas stocks are quite low in vineyards, farmlands and Mediterranean zones. Quantifying stocks is difficult in urban areas; nevertheless, a significant amount of carbon could be stored under green spaces. Carbon stored in forest litter is not taken into account.

Variations in organic carbon stocks depending on land use in France

- **Urban areas**: Variable
- **Vineyards**: ~35 tC/ha
- **Orchards and farmlands**: ~50 tC/ha
- **Grasslands**: ~80 tC/ha
- **Forest**: ~80 tC/ha

Estimate of carbon stored within the 30 first centimetres of soil

Source: IPCC 2013
Continuously providing soil with organic matter

Soil organic matter can be defined as ‘everything that is alive or was alive in the ground’. Organic matter undergoes a degradation which leads to mineralisation. Carbon contained in organic matter is largely released into the atmosphere in the form of a gas. So, in order to maintain carbon stocks, there must be compensation for these losses. Here we explain further...

Organic matter enters the soil in a ‘fresh’ form: plants (fallen leaves, crop residues, root exudates etc.), microorganisms or dead animals. A large part is quickly decomposed: in a few months, organic matter is mineralised by decomposers such as fungi and bacteria, and transformed into carbon dioxide (CO_2) which is quickly released into the atmosphere*. To a lesser extent, losses of organic matter are also due to leaching of dissolved organic matter, water and wind erosion, and fire.

THE INFLUENCE OF CLIMATE AND SOIL CHARACTERISTICS

In the soils of some large ecosystems, such as African savannas and tropical forests, the storage of organic matter in the soil happens with the same rapidity as its degradation. In agro-ecosystems this balance can be disturbed by many factors, which can favour the accumulation of organic material or, on the contrary, its mineralisation. Rainfall and temperature play a major role. For example, low or high humidity levels can hinder...

How is organic matter formed and degraded?

Organic matter inputs
- Crop residues, plant covers
- Endogenous inputs
- Root inputs

Organic matter losses
- Ploughing and harvest
- Water erosion
- Fire
- Leaching

Apart from root inputs, the major source of organic matter inputs is from the surface. On the other hand, organic matter degradation is mainly an underground mechanism, ensured via microbial activity. Possibilities for action can involve both increasing inputs and reducing losses.
the activity of decomposers in soils which naturally accumulate more organic matter than others. Conversely, a 10°C increase in temperature can double or even triple microbiological activity. Climate change, which currently stimulates plant productivity (temperature and CO₂ concentration in the atmosphere) and mineralisation of organic matter, has an impact on carbon storage which is difficult to assess. Finally, the physical and chemical characteristics of soil reduce mineralisation through their ability to ‘protect’ organic matter (see box).

FARMERS: MANAGERS OF ORGANIC MATTER
When harvesting, farmers remove large amounts of plant material. This means the quantity of organic matter returned to the soil is limited. Furthermore, practices such as ploughing aerate the soil and encourage microbial activity and, therefore, mineralisation. Given the important role of organic matter and its positive influence on the environment, the idea is to maintain high inputs of organic matter and adapting losses to a minimum.

*Some organisms (autotrophic, anaerobic) can consume CO₂ before it is released in the atmosphere. However, they are very few of them and so this mechanism is considered as minor.

Roots contribute a lot to carbon storage in soil

Expert opinion

Éric Blanchart
Research director
French Institute of Research for Development

Structure and nature of soils influence organic matter stability

“While the major share of organic matter is quickly mineralised, a more modest quantity can undergo three mechanisms which can help it stabilise and resist mineralisation. First possibility, a chemical transformation: some microbes can transform organic matter into complex carbon molecules, difficult to degrade chemically. The second option consists in integrating organic matter in aggregates, in order to create a physical barrier against microorganisms’ action. Third possibility: if soils are rich in clays and carbonates, these elements can react with organic matter, creating a physico-chemical protection against mineralisation. Finally, even if organic matter can be protected and remain stable for a long time – up to several thousand years – it always ends up mineralised.”
Organic matter in soils is essential for the proper functioning and sustainability of agricultural and forest ecosystems. Organic matter ensures soil stability, carbon storage, water quality, biodiversity etc. Some of these services depend on the quantity of organic matter contained in the soil while others depend on the mineralisation of organic matter.

Organic matter provides multiple environmental services. First of all, organic matter is a food source for organisms living in the soil, microorganisms and fauna. A soil with a high organic matter content encourages the presence of these animals and plants, which are both numerous and varied, and therefore enhances biodiversity.

MINERALISATION, POSITIVE FOR PLANT NUTRITION...
Organisms living in the soil feed on organic matter, and hence contribute to its decomposition and mineralisation. Yet, organic matter acts as a sponge in the soil: it adsorbs and contains various elements which are released once mineralised. In agricultural and forest ecosystems, plants benefit from the cations and mineral elements released as they contribute to their nutrition.

...THOUGH COMPENSATION IS NEEDED TO MAINTAIN CARBON STOCKS AND LIMIT CONTAMINANT TRANSFERS
The mineralisation of organic matter has other effects. First of all, it produces simple molecules such as greenhouse gases (CO₂, N₂O or CH₄, depending on the degradation conditions), which are mainly released into the atmosphere* and therefore contribute to the greenhouse effect. Nitrate and phosphate ions released represent profitable nutrients for plants but, if not assimilated, they can be transferred to water flows. Mineralisation can also free organic and metallic contaminants which were trapped in organic matter. Therefore it is important that stocks of organic matter are progressively replenished, through plants or exogenous inputs which comply with regulations. If these stocks are maintained, the services provided by mineralisation

Bio-indicators to evaluate organic matter dynamics
Bacteria and fungi degrade organic matter, nematodes regulate microorganism populations and earthworms structure soils...The ADEME ‘Soil quality bio-indicators’ programme aims to provide a better understanding of the role of soil-living organisms, in order to supply public and private stakeholders with tools for monitoring and characterising soil quality. The monitoring of many variables linked to soil ecosystems, in different agro-climatic conditions, has made it possible to evaluate the impact of managing soil organic matter on biodiversity. The abundance of fungi and microbial groups and the diversity of nematodes have been identified as early indicators of changes in a soil’s organic quality.
can be ensured, carbon stocks remain constant and contaminant transfers can be limited.

PROVIDING STRUCTURE FOR SOIL

Finally, the maintenance of a certain quantity of organic matter is essential to soil structure, as well as its stability when faced with rainfall. In effect, organic matter acts like ‘glue’ in the soil. It aggregates mineral particles and also provides a food supply for organisms (microorganisms, earthworms) whose activities are also beneficial for soil structure. Therefore, organic matter contributes directly and indirectly to soil structure, which profits both agriculture and the environment. Indeed, crop roots benefit from aerated soils and the infiltration of water is enhanced, avoiding problems such as runoff and erosion.

* Very few microorganisms are able to consume these gases in the soil.

Likewise, the infiltration of water is enhanced, avoiding problems such as runoff and erosion.

Multifunctional

Both the presence and degradation of organic matter are very important. It is a real ‘turntable’ for the cycles of major elements (carbon, nitrogen and phosphorus) and pollutants in soil ecosystems. It acts as a filter for the environment by storing natural contaminants, not only organic but metallic and synthetic. When degraded, organic matter benefits the environment in a different way, by providing a nutrient supply for plants and enhancing soil biodiversity.

Organic matter:
- providing environmental services
- supporting biodiversity
- storing natural contaminants
- acting as a filter for the environment
- contributing to soil fertility
- promoting water infiltration and quality
- supporting climate change mitigation
Points of view.

Carbon storage in soils: rising awareness

Research and public policy are joining forces to boost carbon in French soils and therefore better combat climate change.

The general public may not yet be fully aware of the importance of soils as a carbon pool and a tool for mitigating climate change. However, the business community and the political sector have started to show an interest. “In the agricultural and forestry sectors, awareness is rising,” explains Dominique Arrouays, an INRA researcher specialising in soil. He adds: “It probably isn’t so true for actors in the parks sector and those working in regional planning.” At the Ministry of Sustainable Development, Joseph Lunet confirms that present policies do consider the major role played by soils. According to him, public authorities are especially prominent in improving knowledge about the mechanisms and amounts of carbon involved. He explains: “The French state supports public research programmes which aim to improve our knowledge, under the supervision of GIS Sol(1). Working on a better knowledge of carbon fluxes in farmland and forest soils is essential.”

MAINTAINING OR ENRICHING ALREADY LARGE STOCKS

For the moment, Dominique Arrouays considers present and past land use, climate, clay content, soil depth and agricultural and forestry practices as the main sources of variations in carbon levels in French soils. “The potential for increasing stocks is not necessarily found in the most carbon-weak areas,” he explains. “It might be more useful to preserve or increase already high stocks, rather than try and create new ones in areas where the potential for stabilisation is low. Furthermore, region-specific actions exist, depending on the business sector.”
Map of carbon stocks in French soils

Thanks to the Soil Quality Measurement Network (known by its French initials RMQS – www.gissol.fr), soil carbon stocks have been mapped. They seem greater in highlands and livestock areas. The network does not provide a value for carbon stocks in urban areas (shown in white on the map). However, the inventory of national greenhouse gas emissions suggests that urban areas could contain half the stocks of grassland areas. It takes into account, among others, gardens and urban parks.

France would like to see the land-use sector included in future international climate agreements.

GROWING IMPORTANCE OF INCENTIVE MEASURES

According to Joseph Lunet, support measures which aim to preserve or increase carbon stocks in agricultural soils are increasingly important, especially with the new 2014-2020 CAP (Common Agriculture Policy), and through France’s ‘Loi d’avenir’ legislation for agriculture and forests. Indeed, these policies support incentives for the preservation of permanent grassland and ecologically important areas, ban the destruction of some natural meadows, limit clearance of wooded areas and tackle urban sprawl etc.

The representative of the Ministry of Sustainable Development adds that the issue of carbon and soil is not currently at the heart of climate-related policies, “because soil carbon is poorly taken into account within the framework of the Kyoto Protocol”. According to him, France would like to see that the land-use sector is “included in future international climate framework agreements, post 2020”. That way, policies could take greater account of incentive measures to protect or increase soil carbon stocks.

In the agricultural and forestry sectors, awareness is rising. It needs to be developed in the parks sector and regional planning.

(1) Group of scientific interest including INRA, ADEME, IGN, IRD and the Ministries of Agriculture and Environment.
Changes in land use: the need to preserve carbon-rich soils

The reconstruction of organic carbon stock in the soil takes several decades. This means we should focus on protecting those areas which contain the highest stocks, and on controlling urbanisation.

Turning grassland into cropland leads to a depletion in soil carbon, while afforestation of cropland increases carbon storage. According to the Ministry of Agriculture’s annual agricultural statistics, the main land-use changes in France between 1990 and 2010 included a 0.6 million hectare (Mha) increase in afforested land, but also an increase in urbanised land of 1.4Mha. These land-use changes have been to the detriment of farmland, causing a net loss of 1.3Mha over 20 years, and a 0.7Mha loss of natural land. Within agricultural land, permanent grassland has seen the biggest impact, with a loss of 1.6Mha, mostly for conversion to crop cultivation.

CONTROLLING LAND USE

Although afforestation increases carbon stocks, urbanisation and, in particular, soil sealing leads to a loss of organic matter and soil functions which are very difficult, if not impossible, to reverse. In all cases, in order to preserve French soil carbon stocks and maintain ecosystems which act as carbon sinks, natural environments should be protected and

More than 400,000ha of grassland have been ploughed in France since 2000, and 1.6Mha since 1990.

(source: Agricultural Statistics).

In France, 70,000ha farmland hectares have been lost between 2006 and 2014, according to Teruti-Lucas.

Ploughing up grasslands for crop cultivation causes carbon losses. The Common Agricultural Policy encourages farmers to preserve grasslands.

Carbon stock evolution, depending on land-use change

During the first twenty years which follow a change in land-use, carbon is lost twice as fast as it is stored. Only after several decades or even more than a century can carbon storage compensate carbon losses.

Source: Arrouays and al. 2002
livestock systems should preserve grasslands. Regarding agriculture, agro-environmental measures deter the ploughing of grassland after five years. The French Safer\(^1\) group can also intervene to pre-empt lands threatened by urbanisation. Other regulatory levers are foreseen in the codes dealing with urbanisation, rural areas and the environment, and within the framework of the ALUR law\(^2\). They involve various mechanisms, such as protection zoning, pre-emption and norms on urban densification.

\(\text{Farmland: 28,000 thousand hectares} \)
\(\text{Urban land: 5,100 thousand hectares} \)
\(\text{Natural land and forests: 21,800 thousand hectares} \)

Changes of land-use between 2006 and 2014, in France
Land-use changes create carbon fluxes. The current resolution of spatial monitoring and lack of knowledge concerning urban land limits the precision of measurements.

Expert opinion
Antonio Bispo
Soil and environment engineer at ADEME

Integrating carbon stocks in GHG environmental assessments in land-use policies
“Any change in land use, whether it is for non-food crops or for urbanisation, can have consequences, not only in France but also in developing countries. So, deforestation may intensify in order to maintain the offer of raw materials on world markets. Within the framework of a working group launched in 2010, the impact of French policies promoting bio-fuels on farmland use and CO\(_2\) emissions has been evaluated. This research is now being extended and is integrating different scenarios and drivers in land-use changes, such as urbanisation and agricultural objectives, both at a national scale and worldwide. Competition for different land uses is a major issue for public policies.”

\(\text{(1) Real estate development and rural establishment companies} \)
\(\text{(2) Law for access to housing and renewed urban planning.} \)

Forest soils: rationalising the increase in harvested wood

In chemical terms, forest soils are generally the poorest within a territory, or those whose physical characteristics are the most unfavourable to agriculture. Unlike agricultural soils, they undergo no or very little alteration due to human activity. As a result, organic matter is highly accumulated in the litter and surface layers of soil. In temperate forests, there is approximately as much carbon stored in the soil as there is in the trees.

SUSTAINABLE FORESTRY PRACTICES
Carbon stocks evolve more slowly in forest soils than in agricultural soils. Usually, they are assumed to be stable, but very little monitoring has been conducted to make it possible to know their true medium and long-term evolutions, especially under the influence of changes in forestry practices.

In the future, the foreseeable increase in wood demand - for energy or material needs - will encourage the intensification of forest harvesting. The impact of this intensification on stocks is uncertain; it could lead to opposing effects on litter production and the integration of harvest.
waste in the soil. Nevertheless, a greater harvest of forest residuals, which includes young trees and branches remaining on land after harvesting and pruning of trees, for energy needs, directly decreases soil intakes of carbon. The ADEME guide* on ‘The sustainable harvesting of forest residuals’ recommends that not all of the above-ground biomass should be taken: a portion of the residuals should be left on the ground at each harvest, and residuals should be collected once, maybe twice, in the stand’s life. These recommendations were made in order to preserve the mineral chemical fertility of forest soils and reduce soil compaction, but are also valuable in preserving carbon stocks.

* The guide will be updated on the basis of the collective expertise RESOBIO coordinated in 2013 by GIP ECOFOR.

Expert opinion

Laurent Augusto
INRA researcher

Indicators to protect soil fertility

“The challenge for research consists in finding logistical levers in order to mobilise underexploited woodland, but also in finding good compromises to manage forests which are increasingly in demand. The latter have to preserve their various functions, such as wood production, biodiversity reservoirs and carbon storage. In this context, maintaining organic matter stocks in forest soils is essential, because unlike other countries, French forests receive practically no inputs to contribute to soil fertility. Yet, half of the forests are former farmlands reforested in the middle of the 19th century, because they were too poor or difficult to cultivate. In order to preserve this capital, the challenge consists in finding the right balance between exported wood and the wood left on the ground. Today, research projects are seeking to develop indicators so forest managers can improve their harvesting practices.”

Elements in the GHG balance in the wood sector

Harvesting larger quantities of forest wood could limit increases in carbon stocks in the soil and trees. For a complete evaluation of the GHG balance in the wood sector, we need to take into account carbon storage in wood products (construction and furniture) as well as substitutions of other materials and fossil fuels.

Construction and furniture

- Replaces fossil materials
- Stores carbon

Energy

- Replaces fossil energies
According to INRA estimates in 2002 and 2013, the maximum potential of additional carbon storage in agricultural soils should reach 1 to 3 million tonnes a year over 20 years. This storage could compensate a significant proportion - some 3 to 4% - of France’s annual greenhouse gas emissions, but would require a very pro-active approach.

The practices which should be implemented involve either increasing inputs of organic matter or reducing losses.

SUPPLYING MORE ORGANIC MATTER

The first action identified to increase soil carbon stocks is to increase plant production and return more organic matter to the soil. To achieve this, it is necessary to promote the use of soil cover through the inclusion of intermediate crops in crop rotations, grassing between rows in vineyards and orchards, and extending the lives of temporary grasslands.

In order to return higher amounts of organic matter to the soil, it is necessary to favour soil cover by including intermediate crops in the rotation and grassing between the rows in vineyards and orchards.

In France, less than 1% of cultivated land is directly sown.

4.6Mha is cropped using simplified cultural techniques, a third of the cultivated area.

(Source: Arvalis Institut du Végétal).

To boost carbon levels in agricultural soils, two specific actions have been identified: favouring practices which increase stocks of organic matter and limiting those which increase losses of organic matter.

In order to return higher amounts of organic matter to the soil, it is necessary to favour soil cover by including intermediate crops in the rotation and grassing between the rows in vineyards and orchards.

In France, less than 1% of cultivated land is directly sown.

4.6Mha is cropped using simplified cultural techniques, a third of the cultivated area.

(Source: Arvalis Institut du Végétal).
sources or of manure could be an interesting solution at the local scale, provided low-carbon soils are prioritised and it meets existing regulations.

SLOWING CARBON LOSSES

Hedges and soil cover also effect carbon stocks, by reducing runoff and losses due to erosion. Putting an end to ploughing would lead to an increase in soil-carbon levels as colder and wetter surface conditions and better physical protection in the aggregate slows down the mineralisation of organic matter. According to the Arvalis plant institute, 34.4% of France’s cultivated land is currently cropped using simplified cultural techniques (no-till or low-till), mainly autumn crops. Low-till techniques include direct sowing and more or less deep interventions. Their impact on carbon stocks has often been overestimated. Based on the monitoring of experiments conducted by the international scientific community, only direct sowing provides an average increase over ploughing (0.15 tonnes of carbon storage per year). This result is highly variable depending on the situation. Moreover, field trials led by Arvalis over 40 years on the Boigneville site in Essonne (south of Paris), show that after a 2t/ha annual organic carbon storage over 24 years, direct sowing does not differ from ploughing after 40 years. Furthermore, ploughing is sometimes necessary for agronomic reasons (see box). According to INRA, occasional ploughing every five years would preserve part of the possible gain in carbon stocks and, above all, save on fuel.

Expert opinion

Jérôme Labreuche
Agro-equipment centre manager at Arvalis- Plant Institute

Taking better account of practices which enhance organic matter inputs

The implementation of intermediate nitrate-trap crops (INTCs) during long interculture periods has been encouraged by regulatory obligations. This farming practice improves soil humic balance, especially since carbon storage by INTCs has recently been reappraised. There is also a trend for keeping these crops for a longer time-period, and planting them in areas where it is not necessarily compulsory. Another evolution in practices has been spotted: in cereal production areas, some farmers do not hesitate to add organic inputs to the soil.

When ploughing is justified

According to the Arvalis plant institute, ploughing is most often conducted for spring crops and on soils low in clay content. It provides security for spring crops, as ploughing encourages crop emergence and improves soil structure in situations where there is a significant risk of soil compaction (late harvesting or loamy soils). It is also the case that for easy-to-plough soils this practice is not often called into question. In a context where weed control is increasingly complex, ploughing is recommended, especially where there is strong pressure from grass weeds.
Impacts and levers for action

Agricultural practices according to their cost and efficacy

In 2013, INRA analysed the potential of agricultural practices for mitigating French GHG emissions. Agroforestry, no-till, extending the life of temporary grasslands and maintaining permanent soil cover appear to be the most effective levers for stimulating carbon storage. Here we present the lessons learned.

Ten different actions have been identified by INRA for limiting agricultural emissions of three major greenhouse gases (CO₂, N₂O and CH₄) over the next 15 years. These measures have to be pragmatic and avoid yield losses beyond 10%. Added together, they could lead to a 32 million tonne CO₂-equivalent reduction per year by 2030. These measures also include economic factors. Those which aim at reducing CO₂ emissions together with increasing farmers’ revenues act mainly on economies in the use of fossil fuels and carbon storage in soils and biomass.

Regarding carbon sequestration in the soil, the most effective mitigation measures are occasional ploughing (3.77Mt CO₂-equivalent per year) and agroforestry (1.53Mt CO₂-equivalent per year). However, the long-term impact of occasional ploughing needs to be clarified (see p.17). The cost-efficiency of these measures remains modest at less than €25 per tonne of CO₂-equivalent avoided.

UNDERSTANDING ALL THE BENEFITS

Other moderate-cost measures stimulate the storage of organic matter: increasing the life of temporary grasslands (1.44Mt CO₂-equivalent per year) and extending the grazing period. Extending grazing periods also influences other GHGs because part of the manure usually emitted

Estimation of impacts of agricultural practices on carbon storage

<table>
<thead>
<tr>
<th>Mechanisms involved in C storage</th>
<th>Cost</th>
<th>Increase in plant productivity</th>
<th>Increase in organic matter physical protection</th>
<th>Reduced carbon losses due to leaching and erosion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hedges and plant strips</td>
<td>High</td>
<td>Between 0.1 and 0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agroforestry</td>
<td>Moderate</td>
<td>Between 0.1 and 1.35, including approximately 2/3 in the soil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permanent plant cover</td>
<td>High</td>
<td>Hedges</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• In grasslands: 0.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• In croplands: 0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Plant strips: 0.5±0.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
- A tonne of carbon stored is the equivalent of around 3.66 tonnes of CO₂ captured.
- Agricultural land in France covers around 28.2Mha.
in the barn, and the emissions of N\textsubscript{2}O and CH\textsubscript{4} associated with it, will be reduced. The planting of hedges, intermediate crops, permanent grassing in vineyards and orchards and introducing flower or plant strips (2.77Mt CO\textsubscript{2}-equivalent per year) have a higher cost, mainly because of the working time required. Nevertheless, these measures benefit other environmental aspects, such as conserving the quality of water, soils and biodiversity, of which the economic impact has not been taken into account in this study.

CARBON STOCKS CAPPED IN THE MEDIUM-TERM

Overall, the levers relating to carbon storage in soil and biomass represent 30% of the potential mitigation of GHG emissions, when including their effects on CH\textsubscript{4} and N\textsubscript{2}O emissions, and the substitution of fossil fuels. Beyond the date set in this study - 2030 - carbon stocks will reach a ceiling and net CO\textsubscript{2} fixation will end. However, the other effects of mitigation, such as savings in fuel, will continue.

Expert opinion

Sylvain Pellerin

Coordinator of the INRA study: ‘Ten measures to reduce GHG emissions through agricultural practices’

“For the first time, we have measured and quantified GHG emissions mitigation potential, and the related costs. Carbon storage is favoured by moderate-cost measures, such as no-till or agroforestry. In order to improve the carbon-storage dimension of these practices, inventory methods have to progress. Today, only land-use change impacts are measured.”

- For permanent soil covers in orchards: 0.5±0.3
- For permanent soil covers in vineyards: 0.3±0.2
- For temporary soil covers in vineyards: 0.16
- Increase in temporary grasslands’ lifetime (< 5 ans): 0.15
- Moderate intensification of poor permanent grasslands: 0.4
- Transition to direct sowing, 0.15
- Transition to ploughing every five years: 0.10
- Shallow tillage: no additional C storage
- Between 10 and 50% of the carbon input, according to type of input.
- 0.15 for 7 tonnes of straw
Farmers are aware of the importance of carbon storage, particularly in regard to its benefits for biological activity and overall soil fertility. Yet the role of organic matter in environmental assessments is poorly taken into account. “The time required for reconstructing carbon stocks is so long that this issue isn’t enough to trigger corrective measures in agricultural practices,” says Jean-Luc Fort, manager of the agronomy and environment service at the Poitou-Charentes Chamber of Agriculture, and coordinator of the ‘Sols et Territoires’ Combined Technology Network.

“On the other hand, technical bodies, agricultural advisers and cooperatives are involved in plenty of development and awareness-raising programmes based on the multiple environmental benefits.” Sandrine Leménager, project leader at the soil division at the agriculture, food and territorial policies department (known by its French initials DGPAAT) of the Ministry of Agriculture, identifies new opportunities to better take into account issues relating to soil carbon and climate. The timetable provides evidence: “2015 is a pivotal year,” she says. “France is hosting the 21st climate conference, Paris Climat 2015 (Cop21). It is also the International Year of Soils. The 2014-2020 CAP (Common Agricultural Policy) strongly prioritises measures which ensure greenhouse gas mitigation through carbon storage in soils, such as the preservation of pasture, soil cover, areas of ecological interest...Finally, the fight against the urbanisation of farmland and forest helps to protect the ecosystem services provided by soil carbon storage.”
PRIORITISING INCENTIVE MEASURES
According to Sandrine Leménager, approaching carbon issues through agricultural practices which favour its storage is the entry point. The practices identified concern soil cover, notably intermediate crops, flower or grass strips, inputs of organic matter and the development of agroforestry, but also hedge maintenance and afforestation.

She insists: “There are tools to encourage the implementation of each measure, particularly within the CAP. Some are incentives, others are statutory, but there is a clear tendency to better take into account soil and carbon issues within agricultural practices.”

For Jean-Luc Fort, the agro-environmental measures included in the second pillar of the CAP (Common Agricultural Policy) are relevant levers, because they are based on the environmental benefits and economic compensations obtained, and not only on the administrative management of a problem. “We need to turn this around, to value the agricultural and economic benefits of a better consideration of environmental aspects. Innovative crop management techniques combining several environmental goals are very welcome since they also include agricultural and economic interests. In our region, lucerne (alfalfa) is a perfect example of positive synergy: we use lucerne as a low-input crop which benefits the rotation with, in parallel, the maintenance of livestock which feed on it and add value to the crop.”

This synergy can even go beyond the farming sector. Among the selected measures which increase organic matter, Sandrine Leménager favours the spreading of organic matter inputs, “on the condition that their safety and agronomic value have been demonstrated. The Ministries of Agriculture and of Sustainable Development are working to this end,” she adds.

"Using only the carbon storage angle is not enough to encourage favourable farming systems. We need a multifunctional point of view."
At the field scale, the influence of the actions implemented on soil carbon stocks can be assessed through direct measurements and estimated with the help of models. The latter can help agricultural advisers in changing agricultural practices. Below is an overview of the tools and norms available.

<table>
<thead>
<tr>
<th>Estimation of</th>
<th>Example of norm</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic matter dynamics</td>
<td>NF X31-516, 2007</td>
<td>Isolate particular organic material (plant residues in course of decomposition) and organo-mineral complexes</td>
</tr>
<tr>
<td>Soil microbial biomass</td>
<td>NF EN 14240-1 et -2, 2011</td>
<td>Estimate the microbial activity of organic matter degradation</td>
</tr>
<tr>
<td>Soil respiration</td>
<td>NF EN 16072, 2011</td>
<td></td>
</tr>
<tr>
<td>Certain enzyme activities</td>
<td>NF EN 23753-1 et -2, 2011</td>
<td></td>
</tr>
<tr>
<td>Earthworms</td>
<td>NF EN 23611-1, 2011</td>
<td>Value the number and diversity of invertebrates involved in organic matter dynamics (e.g. earthworms, nematodes)</td>
</tr>
<tr>
<td>Mites and springtails</td>
<td>NF EN 23611-2, 2011</td>
<td></td>
</tr>
<tr>
<td>Enchytraeid worms</td>
<td>NF EN 23611-3, 2011</td>
<td></td>
</tr>
<tr>
<td>Nematodes</td>
<td>NF EN 23611-4, 2011</td>
<td></td>
</tr>
<tr>
<td>Total macro-fauna</td>
<td>PR NF ISO 23611-5, 2010</td>
<td></td>
</tr>
</tbody>
</table>

Expert opinion

Annie Duparque
Head of agronomy at Agro-Transfert Ressources and Territories, and partner in the RMT Sols et Territoires (soil and land combined technology network).

Carbon dynamics: three key points to bear in mind

“In order to assess carbon dynamics, we need a relevant sampling procedure. Different measures have to be made on the same soil amount, and bias must be avoided due to the spatial heterogeneity of organic matter content in farm fields.

“We need to be careful on three different points: recording the samples’ locations with a GPS, and returning to the exact same place for further measurements five to seven years later; to rationalise the sample depth according to the depth of tillage, and keeping it unchanged from one measurement to another; if possible, to determine the soil bulk density through the depth of the sample.

“Carbon content analysis of preliminarily air-dried samples is performed by a laboratory. Then, the organic carbon stock (t/ha) can be calculated by multiplying carbon content with the mass of soil, estimated via depth sampling and bulk density.”
wait between five and 10 years before the impacts of changes in agricultural practices can be observed. Analytical methods can be used for an early estimation of changes in organic matter (see chart opposite). In order to predict the effects of inputs of exogenous organic matter (liquid manure, fertiliser, compost) on carbon stocks, biodegradability indicators based on the biochemical composition of inputs have been developed and standardised. An example is the organic matter stability indicator (NF XPU 44-162, 2009).

USING MODELLING TO GUIDE AGRICULTURAL PRACTICES

Thanks to models such as AMG, established in France by INRA in Laon (02), we can also simulate changes in agricultural practices. Agro-Transfert-RT, INRA and partners in the agricultural sector have developed a decision support system integrating this model, called Simeos-AMG. Designed for use in agricultural advisory services, it simulates and displays the expected changes in soil organic carbon stocks in the long-term (20, 30, 50 years etc.), depending on agricultural practices (crop rotation patterns, residue management, organic inputs, intermediate crops, tillage, irrigation) and on soil and climate characteristics. Specific models are also available for France’s overseas territories, such as the Web Mor-Gwanik application developed for Guadeloupe, which are designed to include the specificities of the climate, farming systems and soils found in the country’s outermost regions. Used within the framework of energy performance plans, ADEME’s tool Dia’ Terre® can include soils in farm greenhouse gas assessments.

Simeos-AMG, a simulation tool for agricultural advice use at different scales

Vegetable production, silt soils (rotation: potatoes/wheat/peas (canning)/beetroot/wheat/carrot)

<table>
<thead>
<tr>
<th>CURRENT SYSTEM</th>
<th>A SCENARIO</th>
<th>B SCENARIO</th>
<th>C SCENARIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Ploughing: 2 years out of 3</td>
<td>(Reduced C losses)</td>
<td>(Inputs of humic substances)</td>
<td>• Input of green waste compost: 10t/ha over 6 years</td>
</tr>
<tr>
<td>• Ploughing depth: 28cm</td>
<td>• No ploughing</td>
<td>• Input of green waste compost: 10t/ha over 6 years</td>
<td>• One ploughing removed and reduction of depth to 22cm</td>
</tr>
<tr>
<td>• Green fertilisers: 1 year out of 3</td>
<td>• Reduction of ploughing depth to 22cm</td>
<td>6 years</td>
<td></td>
</tr>
</tbody>
</table>

Organic matter content evolution in the tilled layer of the soil

![Graph showing organic matter content evolution over 30 years for different scenarios](Source agro-transfert RT, Duparque et al, 2011)
Measurement tools at the territorial scale

Direct measurements, national databases, modelling, etc.: evaluation tools offer the possibility of monitoring the impacts of public policies and predicting changes in soil carbon stocks.

As for fields, soil carbon stocks can be monitored at the territorial level thanks to direct measurements and modelling. Using direct measurements requires the introduction of sampling networks.

MEASUREMENT NETWORKS AT THE NATIONAL SCALE

In France, two main networks, complementary in their design, are managed within the framework of GIS Sol: RMQS (soil quality measurement network) and BDAT (soil analysis database).

- **RMQS** is based on the monitoring of 2,200 observation sites, divided according to a 16km per side grid across the whole territory. This network supplies average data and representative values of carbon stocks for the main land uses (forests, crops, permanent pasture etc.). Analyses

Modelling offers the possibility of estimating the effects of modifications to cropping systems at small regional agricultural levels

"Within the work conducted in Sols et Territoires(1), we showed that it was possible to apply the AMG model for carbon dynamics in agricultural soils, based on a spatial inventory of ‘soils, cropping systems, and current organic carbon content’. To achieve this inventory, pre-existing databases were used: CAP data, pedological regional references (RRP) and the soil analysis database. Nevertheless, local agronomic expertise is necessary to group these data. The chart (left) shows a model application in Poitou-Charentes (Vigot, 2012): the introduction of intermediate crops limits carbon losses and even increases stocks depending on the soil type in question."

Expert opinion

Olivier Scheurer

Lecturer at the Institut Polytechnique LaSalle Beauvais, and partner in the RMT Sols et Territoires (soil and land combined technology network).

Net balance of CO₂ emissions for the cultivated red soils in Vienne, calculated from simulated changes over 50 years.

<table>
<thead>
<tr>
<th></th>
<th>Balance (tC/ha/yr)</th>
<th>Balance (tC/ha/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red soil - 86</td>
<td>-0.05</td>
<td>0.01</td>
</tr>
<tr>
<td>Average depth</td>
<td>-0.10</td>
<td>-0.05</td>
</tr>
<tr>
<td>Shallow</td>
<td>0.07</td>
<td>0.13</td>
</tr>
<tr>
<td>Deep</td>
<td>-0.10</td>
<td>-0.03</td>
</tr>
<tr>
<td>Without intermediate crops</td>
<td></td>
<td></td>
</tr>
<tr>
<td>With intermediate crops</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) www.sols-et-territoires.org
Soil and carbon are also conducted to characterise agronomic parameters, contamination levels and soil biodiversity. Thanks to the first sampling campaign between 2001 and 2011, carbon stocks in mainland France and the French West Indies have been evaluated. Starting from 2015, a new sampling campaign will be conducted in order to observe changes in stocks. All the RMQS samples are conserved at INRA’s national soil sample conservatory in Orléans.

BDAT is a database which gathers the results of soil analyses conducted by farmers. The database groups around two million samples taken since 1990. Thanks to the data collected, it has been shown that agricultural soils tended to lose approximately 6Mt of carbon per year between 1990 and 1995, and 1999 to 2004. However, these changes are spatially highly variable and extending these changes to all French farmland comes with great uncertainties linked to the temporal and spatial diversity of the sampling and analytical methods. In France, there are other observation networks integrating soil carbon measurements too. For example, the Renecofor network monitors 102 forest sites in mainland France. The SOERE network (observation and experimentation system for long-term environmental research) brings together different sites chosen to estimate the long-term impacts of climate and agricultural practices.

MODEL-BASED EVALUATIONS

The implementation of observation networks is limited due to their cost and the length of time required. Therefore, in order to evaluate policies which impact on soil management and carbon stocks, modelling is needed to complete and extrapolate direct measurements. This is the case for the methods developed by INRA, working with Citepa (a technical centre studying atmospheric pollution), based on the GIS Sol database, in order to feed national inventories for GHG emissions. Other tools have been developed for use at the territorial scale. The Simeos-AMG tool made it possible for the AMG model to be implemented at the agricultural territorial level in Loiret and Poitou-Charentes (see box). The ABC’Terre project (Reacctif ADEME 2012) continues this work, and will also lead to the development of a calculation method for GHG emissions balances, integrating soil carbon balances at the agricultural territorial level. This project will also improve ADEME’s Climagri® tool, used in greenhouse gas diagnoses within territorial climate-energy plans (PCEAT).
Soils and the carbon they store are linked to many environmental issues. They play a major role in climate regulation, but also in preserving air and water quality, soil fertility and biodiversity, particularly through the maintenance or increases in stocks of organic matter. In order to facilitate the inclusion of soil carbon in national and local policies, it is necessary to resolve some uncertainties. We need to expand the references available to provide a better representation of territorial diversity and different land uses. To achieve this, new experimental data depicting carbon dynamics in the longer term needs to be acquired, and existing data should be pooled. There is important work to be conducted on forest soils, in overseas territories and in urban areas. For a climate-based approach, this work has to integrate all GHG soil emissions, particularly nitrogen protoxide (N₂O) derived from the degradation of organic matter and crop fertilisers.

TAKING SOILS INTO ACCOUNT IN DECISION SUPPORT SYSTEMS

Whether at the field or territorial scale, decision support systems including soil carbon are being developed. Their improvement and distribution will support farmers, agricultural advisers and local authorities in making choices and recommendations. At the supply chain level, including soil in product life-cycle analysis, especially for food and bio-products, would make it possible to include soil carbon in procurement and production system decision making. These tools still need to be created for forest and urban soils. Finally, the focus should not only be on carbon, but include the other environmental services provided by soils.

In order to improve the inclusion of soil carbon in environmental assessments, some uncertainties still have to be resolved. Nevertheless, tools to support the agricultural sector and local communities are being developed.

Including soil criteria in life-cycle analysis of food products will help to better guide agricultural practices in the long run.

Perspectives

Improving and sharing references
An international dynamic to combine food security and climate change mitigation

Agriculture can and must be part of the solution to climate change. In 2015, France is launching the ‘4 per 1,000’ carbon sequestration programme for agriculture. This international research programme aims to adapt agricultural practices with the goal of storing carbon more efficiently in the soil. An annual ‘4 per 1,000’ (0.4%) increase in organic matter in soil would be enough to compensate the global emissions of greenhouse gases. Conversely, a loss of the same amount would double the emissions. Managing and increasing organic matter in agricultural soil is a way to reconcile soil preservation, food security and climate change mitigation.

The ‘4 per 1,000’
Fighting climate change by storing carbon in soil biomass

“This international research programme combines the objectives of food security and climate change mitigation, and can therefore involve all the countries in COP 21” Stéphane LeFoll, Minister of Agriculture, Food and Forests

Soils worldwide contain 2,400 billion tonnes of organic carbon

8.9 billion tonnes of carbon per year

8.9

↑↑

CO₂ emissions

2 400

↓↓

Organic carbon storage in soils

↑↑

CO₂ absorption by plants

8.9 /

Carbon stored in organic form

2 400 =

Carbon emitted in CO₂ form

8.9 / 2 400 = ratio 0.4%

SO₂, if we increase carbon stored in soil by 0.4%, we compensate for CO₂ emissions from fossil carbon, which are mainly responsible for the greenhouse effect and climate change.

Increase in CO₂ absorption by plants: agricultural land, grassland and forests

↓↓

CO₂ emissions

↓↓

+0.4% carbon stored in soil worldwide = 0 CO₂ emissions in the air
ADEME supports research for better agricultural and environmental management of soil organic matter

Aware of the importance of soil preservation and organic matter management, ADEME has supported science for several decades through research and thesis programmes (for example, the GESSOL programme)*. In 2010, research actions were launched to provide a better understanding of soil and climate interactions because soils contribute to the fluxes of three main greenhouse gases (GHG). These gases are nitrous oxide (N\textsubscript{2}O), methane (CH\textsubscript{4}) and carbon dioxide (CO\textsubscript{2}). Research questions linked to the role of soil in climate change have been integrated in the 'REACCTIF' call for projects (Research on climate change mitigation through agriculture and forestry) in order to highlight strategies for carbon storage in soil and emissions mitigation. Work began in 2012 and 18 projects are currently aiming to provide a better understanding of the effect of land use (agricultural land, grassland and forest) and management of the GHG balance in France and overseas territories. Furthermore, projects for a better integration of soils in climate policies, environmental assessments and ISO standards have also been launched.

The 18 research programmes chosen which include soil as an important dimension in climate change mitigation (REACCTIF project) in agriculture and forestry.

<table>
<thead>
<tr>
<th>Theme</th>
<th>Coordinator</th>
<th>Title</th>
<th>Deliverables</th>
</tr>
</thead>
</table>
| Crops | Fabien LIAGRE (AGROOF) | AGRIPSOL – Agroforestry for preserving soil | • Measuring protocols
• Assessment of agricultural practices |
| Grasslands | Cornelia RUMPEL (CNRS) | AEGES – Mitigation of GHGs emissions in grasslands. | • Assessment of agricultural practices
• Modelling |
| Crops | Eric JUSTES (INRA) | CICC – Cover crops for mitigating climate change | • Assessment of agricultural practices
• Modelling
• Decision support tool |
| Crops | Caroline COLNENNE-DAVID (INRA) | SYSCLIM – Crop systems and climate change | • Assessment of agricultural practices |
| Crops | Joël LEONARD (INRA) | EFFEMAIR N\textsubscript{2}O – Modelling and assessment of the effect of environmentally-friendly practices on microbial activities and N\textsubscript{2}O emissions from soils. | • Assessment of agricultural practices
• Modelling |

<table>
<thead>
<tr>
<th>Theme</th>
<th>Coordinator</th>
<th>Title</th>
<th>Deliverables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crops</td>
<td>Catherine HENAULT (INRA)</td>
<td>SOLGES – Ability of soil to reduce N₂O.</td>
<td>• Assessment of agricultural practices</td>
</tr>
<tr>
<td>Livestock breeding</td>
<td>Safya MENASSEH-AUBRY (AGROCAMPUIS OUEST)</td>
<td>ETYC – Integrated assessment of the treatment and the recycling of organic matter in livestock systems designed to mitigate climate change.</td>
<td>• Assessment of agricultural practices</td>
</tr>
<tr>
<td>Grasslands</td>
<td>Annette MORVAN-BERTRAND (University of Caen)</td>
<td>P2C – Plant: major actor of the capture of atmospheric carbon and its transfer to grassland soils.</td>
<td>• Assessment of agricultural practices</td>
</tr>
</tbody>
</table>
| Crops | Manuel MARTIN (INRA) | CSopra – Accounting methods of soil carbon sequestration in French agricultural soils. | • New accounting methods
• Modelling
• National Inventory |
| Crops | Annie DUPARQUE (AGRO-TRANSFERT RT) | ABCTERRE – Mitigation of GHG emissions from agriculture and carbon sequestration at regional scale. | • Regional Inventory
• Decision support tool |
| Crops and livestock breeding | Cécile BESSOU (CIRAD) | SOCLE – Accounting the effect on soil carbon of land use and land-use changes in Life Cycle Analysis of agricultural products. | • LCA Methodology
• Decision support tool |
| Crops | Pierre TODOROFF (IRD) | C@RUN – Storage/sequestration of carbon in the agricultural soils of the Reunion Island (France) | • Regional Inventory |
| Crops | Jorge SIERRA (INRA) | TropEmis – Regional assessment of soil carbon sequestration or emission in the tropical soils of Guadeloupe (France) | • Regional Inventory
• Decision support tool |
| Crops | Michel BROSSARD (IRD) | CarSGuy – Soil carbon in French Guyana | • Regional Inventory |
| Forests | Daniel EPRON (University of Lorraine) | EMEFOR – Effect of soil compaction on CO₂ and CH₄ exchanges in forest soils. | • Assessment of forest management |
| Crops, Forests, Grasslands | Bernard LONGDOZ (INRA) | CESEC – Analysis of long times series of net exchanges of CO₂, water vapor and radiation in forests, grasslands and croplands. | • Assessment of forest, crop and grassland managements |
| Forests | Lauric CÉCILLON (IRSTEA) | piCaSo – Effect of forest management and soil type on carbon stocks in forest soils. | • Assessment of forest management |
| Forests | Laurent SAINT-ANDRÉ (INRA) | RESPIRE – Harvesting of wood residues: potential, impact and remediation by spreading of ashes. | • Assessment of forest management |
European top soils contain more than 70 billion tonnes of organic carbon.

The European soil database, at a scale of 1:1,000,000, is one of the most homogeneous and comprehensive databases on the organic carbon/matter content of European soils. It also includes information from associated databases on land cover, climate and topography.

Deep soil carbon: a reservoir not to be neglected!

The first estimates of deep soil carbon stocks in France have been produced by INRA using data from GIS Sol and ISRIC. Soil profiles have been modelled down to 1m across France following the specifications of the GlobalSoilMap programme (www.globalsoilmap.net). In France, 35 to 60% of total organic carbon could be sequestered deeper than the first 30cm. Biological and human factors predominate at the surface while abiotic factors, such as soil parent material, become more important with depth. These estimates remain highly uncertain. However, they indicate that soil may have a larger potential to sequester carbon than usually reckoned.

Soil organic carbon matters in the European Union

"EU soils contain more than 70 billion tonnes of organic carbon, which is equivalent to almost 50 times our annual greenhouse gas emissions. However, intensive and continuous arable production may lead to a decline in soil organic matter. In 2009, European croplands emitted an average of 0.45 tonnes of CO₂ per hectare (much of which resulted from land conversion). The conversion of peatlands and their use is particularly worrying. For instance, although only 8% of farmland in Germany is on peatland, it is responsible for about 30% of the total greenhouse gas emissions of its whole farming sector. However, with appropriate management practices, soil organic matter can be maintained and even increased. Apart from peatlands, particular attention should be paid to the preservation of permanent pastures and the management of forest soils, as carbon age in the latter can be as high as 400-1,000 years. Keeping carbon stocks is therefore essential for the fulfilment of present and future emission reduction commitments of the EU. Soil organic carbon is the major component of soil organic matter that improves the physical properties of soil, as it stores a great proportion of nutrients necessary for plant growth."

Luca Montanarella
Senior Expert, European Commission DG JRC.H5

3 Ibid., p. 13.
Expert opinion

Isabelle Feix
National soil expert at ADEME

Organic matter fuels agroecology

“Agroecology returns agronomy to the centre of agricultural practices. Soils, and the organisms living in it, are one of the driving forces of agroecology, with organic matter providing the fuel. Depending on its degradation stage, organic matter supplies nutrients for plants, contributes to soil stability, maintains water reserves, provides a home to soil-living organisms and contributes to good root structure for crops. The good management of soils is essential to improve production systems. A healthy soil makes it possible to rationalise inputs of fertilisers, water and even plant protection products, and also improves crop vigour. To ease the implementation of agroecology, research has to focus on soils and work in a sector-approach, in conjunction with technical institutes and farmers. It has to prove that other sustainable production systems, identified according to the nature of the soil, can be implemented. It also has to guarantee the durability of systems which ensure soil carbon stocks are maintained or increased by assessing their environmental, economic and social impacts. This approach will avoid later problems, for example, a system which provides environmental benefits through carbon storage but creates other problems, such as increased N₂O emissions or greater use of plant protection products.”

Main references

• Agro-Transfert Ressources et Territoire (coord.) 2012. Gérer l’état organique des sols dans les exploitations agricoles.
• UE, 2013. Décision 529/2013/EU relative aux règles comptables concernant les émissions et les absorptions de gaz à effet de serre résultant des activités liées à l’utilisation des terres, au changement d’affectation des terres et à la forêt (UTCATF) et aux informations concernant les actions liées à ces activités.

To contributors and proofreaders:
Véronique Antoni (MEDDE), Dominique Arrouays (INRA), Laurent Augusto (INRA), Marion Bardy (INRA), Marc Bédard (ADEME), Eric Blanchart (IRD), Antonio Bispo (ADEME), Alain Bouthier (Arvalis-Institut du Végétal), Michel Brossard (IRD), Claire Chenu (AgroParisTech), Vincent Colomb (ADEME), Annie Duparque (Agro-Transfert RT), Isabelle Feix (ADEME), Christian Feuillet (MEDDE), Jean-Luc Fort (Chambre d’agriculture Poitou-Charentes), Chantal Gascuel (INRA), Camille Guillier (ADEME), Françoise Juille (INRA) Jérôme Labreuche (Arvalis-Institut du Végétal), Sandrine Leménager (MAAF), Joseph Lunet (MEDDE), Manuel Martin (INRA), Sarah Martin (ADEME), Dorothée Pageaud (MEDDE), Sylvain Pellerin (INRA), Caroline Rantien (ADEME), Olivier Scheurer (Institut LaSalle-Beauvais), Nicolas Saby (INRA), Marie-Françoise Slak (IGN), Audrey Trevisiol (ADEME), Vivescia. Luca Montanarella (JRC)
ADEME in brief

The French Environment and Energy Management Agency (ADEME) participates in the implementation of environmental, energy and sustainable development policies. The agency helps companies, local authorities, government bodies and the general public through its expertise and advisory capacities, allowing them to establish and consolidate their environmental actions. Furthermore, ADEME helps finance projects, from research through to implementation, in the following domains: waste management, land conservation, energy efficiency and renewable energies, air quality and noise pollution. ADEME is a public institution under the joint supervision of the Ministry of Ecology, Sustainable Development and Energy and the Ministry of National Education, Higher Education and Research.

Organic carbon in soils
Meeting climate change and food security challenges

Farmland and forests occupy more than 80% of the French territory and currently store 4 to 5Gt of carbon (including 15 to 18Gt of CO₂), with more than two-thirds of this carbon stored in top soils. Any positive or negative fluctuation of this stock influences national greenhouse gas (GHG) emissions, which are estimated at 0.5Gt CO₂ eq/year (2011). The agricultural and forestry sectors also offer solutions for climate change mitigation through the production of renewable energies and preserving or increasing carbon stocks in soils and biomass. The management of organic matter, which is the principal carbon reservoir in soils, is a key determinant in the capacity of soils to produce food and material and to offer other environmental services such as the regulation of water cycles and air quality etc. Acting on soil carbon stocks also means acting on soil and environmental quality. This is the sense of the ‘4 per 1,000’ initiative proposed by France at COP21. Drawing on data from the GIS Sol database, this brochure highlights the important role of soil carbon in French climate change mitigation strategies. In order to address soil and climate change challenges, the main agricultural and forestry levers for action are presented. An inventory of evaluation tools, from the field to the national scale, will help managers and advisers to better direct practices.

www.ademe.fr