Médiathèque

Génotoxicité des hydrocarbures aromatiques polycycliques en mélanges, une classe majeure de polluants atmosphériques

Description du tableau
Auteur(s) : GENIES C
Organisme : UNIVERSITE GRENOBLE, ADEME, LABORATOIRE TIMC
Collection : Expertises
Description : novembre 2013
Type de contenu : These
Disponibilité : Contacter le Centre de documentation de l’ADEME Angers (téléphone 02 41 20 41 89 / documentation@ademe.fr)
Gratuit

Partager cette fiche

Description du tableau
Résumé : Les hydrocarbures aromatiques polycycliques (HAP) représentent une famille de polluants atmosphériques issus de la combustion incomplète de la matière organique. Ils sont ainsi présents dans l'atmosphère polluée des villes, la fumée de cigarette et certaines industries. Une exposition aux HAP peut être à l'origine de cancers du poumon, de la peau et de la vessie. À ce titre, certains HAP sont suspectés ou reconnus cancérigènes pour l'Homme, comme le benzo[a]pyrène (B[a]P), par leur capacité à induire des dommages à l'ADN après métabolisation. Malgré une émission systématique des HAPs en mélanges, la majorité des études s'est intéressée à l'effet génotoxique des HAP purs, et principalement au B[a]P.

Afin de fournir des données mécanistiques sur la génotoxicité et le mode d'action des mélanges de HAP, nous avons réalisé une étude in vitro dans des lignées cellulaires de poumons (A549), de vessie (T24) et de foie (HepG2). Les dommages à l'ADN ont été suivis par la mesure des adduits par HPLC-MS/MS et des dommages oxydatifs par la méthode des comètes, ainsi que le métabolisme par l'induction des gènes par RT-qPCR et les activités enzymatiques des CYP540 de phase I (EROD) et de phase II (GST). Dans un premier temps, l'utilisation du B[a]P, comme composé modèle a montré une absence quasi-totale de métabolisation et de génotoxicité pour T24. Par contre, la formation d'adduits et l'induction de la métabolisation a été mise en évidence pour A549, avec des effets notamment de dose-réponse « en cloche » similaires à ceux observés dans d'autres modèles de poumons.

Nous avons ensuite étendu cette démarche à 12 HAP prioritaires et étudié leur métabolisation et la formation d'éventuels adduits en se focalisant sur la lignée pulmonaire A549. La combinaison de ces HAP au B[a]P dans des mélanges binaires ou dans des mélanges plus complexes mimant des mélanges environnementaux entraîne une forte inhibition de la formation des adduits issus du B[a]P sans apparition d'adduits d'autres HAP. Par ailleurs, nous avons observé dans le cas des mélanges complexes une bonne corrélation entre l'activité EROD et la formation des adduits à l'ADN, alors que les gènes de phase sont eux surexprimés par l'exposition au mélange par rapport au B[a]P pur. Les mécanismes par lesquels s'exerce cette inhibition des adduits restent encore à élucider mais la métabolisation des HAPs constitue une étape clé dans la génotoxicité des mélanges à travers des phénomènes d'inhibition ou de compétition au niveau des CYP entrainant une inhibition de l'activité EROD.

Il est donc clair que l'étude des HAP de façon individuelle n'est pas suffisante pour appréhender la génotoxicité des mélanges complexes. L'approche FET, couramment utilisée pour évaluer le risque lié à l'exposition aux mélanges de HAP, repose sur l'additivité des effets toxiques et néglige les interactions métaboliques entre les différents HAP. L'amélioration de cet outil de prédiction est nécessaire et passe obligatoirement par l'étude des mécanismes sous-jacents qui relient la composition des mélanges, leur métabolisation et leur génotoxicité.

Détails

Description du tableau
Mots-clés : POLLUTION DE L'AIR, HAP
Date de mise en ligne : novembre 2013
Date d'édition : novembre 2013
Langue : FR
Type de support : Imprimé/A4
Cible(s) concernée(s) : Entreprises et Monde Agricole, Recherche et Innovation
Public : Monde de la recherche